

March 13, 2025

Outline

1. Probability Distributions

Outline

1. Probability Distributions
 - ▶ Discrete distribution

Outline

1. Probability Distributions
 - ▶ Discrete distribution
 - ▶ Continuous distribution

Outline

1. Probability Distributions
 - ▶ Discrete distribution
 - ▶ Continuous distribution
2. Integral Techniques

Outline

1. Probability Distributions
 - ▶ Discrete distribution
 - ▶ Continuous distribution
2. Integral Techniques
3. Exercises and Solutions

Probability Distributions

- ▶ A **probability distribution** assigns probabilities to all possible outcomes of a random experiment.

Probability Distributions

- ▶ A **probability distribution** assigns probabilities to all possible outcomes of a random experiment.
- ▶ Two main types:

Probability Distributions

- ▶ A **probability distribution** assigns probabilities to all possible outcomes of a random experiment.
- ▶ Two main types:
 - ▶ **Discrete distribution:** countable outcomes.

Probability Distributions

- ▶ A **probability distribution** assigns probabilities to all possible outcomes of a random experiment.
- ▶ Two main types:
 - ▶ **Discrete distribution:** countable outcomes.
 - ▶ **Continuous distribution:** uncountably infinite outcomes within intervals.

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- ▶ Count occurrences:

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- ▶ Count occurrences:
 - ▶ 0 heads: $\{TTT\} \rightarrow$ Probability: 1/8

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- ▶ Count occurrences:
 - ▶ 0 heads: $\{TTT\} \rightarrow$ Probability: 1/8
 - ▶ 1 head: $\{HTT, THT, TTH\} \rightarrow$ Probability: 3/8

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- ▶ Count occurrences:
 - ▶ 0 heads: $\{TTT\} \rightarrow$ Probability: 1/8
 - ▶ 1 head: $\{HTT, THT, TTH\} \rightarrow$ Probability: 3/8
 - ▶ 2 heads: $\{HHT, HTH, THH\} \rightarrow$ Probability: 3/8

Discrete Probability Distribution

Characteristics:

- ▶ Clearly defined outcomes (finite or countable).
- ▶ Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

- ▶ Possible outcomes: $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ Each outcome is equally likely: $P(X = i) = \frac{1}{6}$

Example 2: Flipping a Coin Three Times

- ▶ Define random variable: Number of heads in 3 flips.
- ▶ Outcomes set:
 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- ▶ Count occurrences:
 - ▶ 0 heads: $\{TTT\} \rightarrow$ Probability: 1/8
 - ▶ 1 head: $\{HTT, THT, TTH\} \rightarrow$ Probability: 3/8
 - ▶ 2 heads: $\{HHT, HTH, THH\} \rightarrow$ Probability: 3/8
 - ▶ 3 heads: $\{HHH\} \rightarrow$ Probability: 1/8

Continuous Probability Distribution

Characteristics:

- ▶ Infinite possible values within an interval.

Continuous Probability Distribution

Characteristics:

- ▶ Infinite possible values within an interval.
- ▶ Probability density function (PDF): $f(x)$

Continuous Probability Distribution

Characteristics:

- ▶ Infinite possible values within an interval.
- ▶ Probability density function (PDF): $f(x)$
- ▶ Probability found by integrating the PDF over the interval.

$$P(a < x < b) = \int_a^b f(x) dx$$

Continuous Probability Distribution

Characteristics:

- ▶ Infinite possible values within an interval.
- ▶ Probability density function (PDF): $f(x)$
- ▶ Probability found by integrating the PDF over the interval.

$$P(a < x < b) = \int_a^b f(x) dx$$

- ▶ Normalization condition:

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Mean Value of Distributions

Discrete case:

$$\bar{x} = \sum_i x_i P(x_i)$$

- ▶ The mean (expected value) represents the average outcome if the experiment is repeated many times.

Mean Value of Distributions

Discrete case:

$$\bar{x} = \sum_i x_i P(x_i)$$

- ▶ The mean (expected value) represents the average outcome if the experiment is repeated many times.
- ▶ Computed by summing each possible outcome weighted by its probability.

Mean Value of Distributions

Discrete case:

$$\bar{x} = \sum_i x_i P(x_i)$$

- ▶ The mean (expected value) represents the average outcome if the experiment is repeated many times.
- ▶ Computed by summing each possible outcome weighted by its probability.

Continuous case:

$$\bar{x} = \int_{-\infty}^{\infty} xf(x) dx$$

Mean Value of Distributions

Discrete case:

$$\bar{x} = \sum_i x_i P(x_i)$$

- ▶ The mean (expected value) represents the average outcome if the experiment is repeated many times.
- ▶ Computed by summing each possible outcome weighted by its probability.

Continuous case:

$$\bar{x} = \int_{-\infty}^{\infty} xf(x) dx$$

- ▶ The mean is computed as an integral over all possible outcomes.

Mean Value of Distributions

Discrete case:

$$\bar{x} = \sum_i x_i P(x_i)$$

- ▶ The mean (expected value) represents the average outcome if the experiment is repeated many times.
- ▶ Computed by summing each possible outcome weighted by its probability.

Continuous case:

$$\bar{x} = \int_{-\infty}^{\infty} xf(x) dx$$

- ▶ The mean is computed as an integral over all possible outcomes.
- ▶ It represents the center of mass or balance point of the probability density function.

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.
- ▶ Polar coordinates naturally simplify calculations due to radial symmetry.

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.
- ▶ Polar coordinates naturally simplify calculations due to radial symmetry.

Polar coordinate transformation:

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.
- ▶ Polar coordinates naturally simplify calculations due to radial symmetry.

Polar coordinate transformation:

- ▶ From Cartesian to Polar: $(x, y) \rightarrow (r, \theta)$

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.
- ▶ Polar coordinates naturally simplify calculations due to radial symmetry.

Polar coordinate transformation:

- ▶ From Cartesian to Polar: $(x, y) \rightarrow (r, \theta)$
- ▶ Relation: $x = r \cos \theta, \quad y = r \sin \theta$

Integral Techniques: Gaussian Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Why polar coordinates?

- ▶ Integral involves $x^2 + y^2$ suggesting circular symmetry.
- ▶ Cartesian coordinates complicate symmetry.
- ▶ Polar coordinates naturally simplify calculations due to radial symmetry.

Polar coordinate transformation:

- ▶ From Cartesian to Polar: $(x, y) \rightarrow (r, \theta)$
- ▶ Relation: $x = r \cos \theta, \quad y = r \sin \theta$
- ▶ Differential area transformation: $dx dy = r dr d\theta$

Integral Techniques: Calculation

Integral evaluation step-by-step:

$$\begin{aligned}I^2 &= \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right) \left(\int_{-\infty}^{\infty} e^{-y^2} dy \right) \\&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy \\&= \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta \\&= \left(\int_0^{2\pi} d\theta \right) \left(\int_0^{\infty} e^{-r^2} r dr \right) \\&= (2\pi) \cdot \frac{1}{2} = \pi \\&\Rightarrow I = \sqrt{\pi}\end{aligned}$$

Conclusion: Gaussian integral evaluates to $\sqrt{\pi}$.

Exercise

Evaluate:

1. $\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$

Exercise

Evaluate:

1. $\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$

2. $\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$

Exercise

Evaluate:

1. $\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$

2. $\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$

Potential questions:

Exercise

Evaluate:

1. $\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$

2. $\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$

Potential questions:

- ▶ Why are integrals of odd functions zero?

Exercise

Evaluate:

1. $\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$

2. $\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$

Potential questions:

- ▶ Why are integrals of odd functions zero?
- ▶ How does symmetry simplify the evaluation?

Solution: Odd Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$$

Step-by-step reasoning:

- ▶ Recognize integrand $x^3 e^{-x^2}$ is an odd function.

Solution: Odd Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$$

Step-by-step reasoning:

- ▶ Recognize integrand $x^3 e^{-x^2}$ is an odd function.
- ▶ An odd function satisfies: $f(-x) = -f(x)$.

Solution: Odd Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$$

Step-by-step reasoning:

- ▶ Recognize integrand $x^3 e^{-x^2}$ is an odd function.
- ▶ An odd function satisfies: $f(-x) = -f(x)$.
- ▶ Integration is symmetric from $-\infty$ to ∞ .

Solution: Odd Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$$

Step-by-step reasoning:

- ▶ Recognize integrand $x^3 e^{-x^2}$ is an odd function.
- ▶ An odd function satisfies: $f(-x) = -f(x)$.
- ▶ Integration is symmetric from $-\infty$ to ∞ .
- ▶ Integral of an odd function over symmetric interval around zero is always zero.

Solution: Odd Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx$$

Step-by-step reasoning:

- ▶ Recognize integrand $x^3 e^{-x^2}$ is an odd function.
- ▶ An odd function satisfies: $f(-x) = -f(x)$.
- ▶ Integration is symmetric from $-\infty$ to ∞ .
- ▶ Integral of an odd function over symmetric interval around zero is always zero.

Therefore,

$$\int_{-\infty}^{\infty} x^3 e^{-x^2} dx = 0$$

Solution: Even Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$$

- ▶ The integrand is even: symmetric about $x = 0$, allowing simplification:

$$2 \int_0^{\infty} x^4 e^{-x^2} dx$$

Solution: Even Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$$

- ▶ The integrand is even: symmetric about $x = 0$, allowing simplification:

$$2 \int_0^{\infty} x^4 e^{-x^2} dx$$

- ▶ Substitute $u = x^2$; thus, $du = 2x dx$ or $x dx = du/2$, giving:

$$= 2 \int_0^{\infty} u^2 e^{-u} \frac{du}{2\sqrt{u}} = \int_0^{\infty} u^{3/2} e^{-u} du$$

Solution: Even Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$$

- ▶ The integrand is even: symmetric about $x = 0$, allowing simplification:

$$2 \int_0^{\infty} x^4 e^{-x^2} dx$$

- ▶ Substitute $u = x^2$; thus, $du = 2x dx$ or $x dx = du/2$, giving:

$$= 2 \int_0^{\infty} u^2 e^{-u} \frac{du}{2\sqrt{u}} = \int_0^{\infty} u^{3/2} e^{-u} du$$

- ▶ Evaluate using integration by parts twice:

Solution: Even Function Integral

Evaluate integral:

$$\int_{-\infty}^{\infty} x^4 e^{-x^2} dx$$

- ▶ Evaluate using integration by parts twice:

$$\begin{aligned}\int_0^{\infty} u^{3/2} e^{-u} du &= \frac{3}{2} \int_0^{\infty} u^{1/2} e^{-u} du \\ &= \frac{3}{2} \cdot \frac{1}{2} \int_0^{\infty} u^{-1/2} e^{-u} du \\ &= \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{\sqrt{\pi}}{1} \\ &= \frac{3\sqrt{\pi}}{4}\end{aligned}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$\begin{aligned} u &= u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u} \\ &= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du \end{aligned}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$u = u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u}$$

$$= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► The first term vanishes at limits (due to exponential), leaving:

$$\frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$u = u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u}$$

$$= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► The first term vanishes at limits (due to exponential), leaving:

$$\frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$u = u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u}$$

$$= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► The first term vanishes at limits (due to exponential), leaving:

$$\frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$u = u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u}$$

$$= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► The first term vanishes at limits (due to exponential), leaving:

$$\frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► First integration:

$$u = u^{3/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{3}{2} u^{1/2} du, \quad v = -e^{-u}$$

$$= \left[-u^{3/2} e^{-u} \right]_0^\infty + \frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► The first term vanishes at limits (due to exponential), leaving:

$$\frac{3}{2} \int_0^\infty u^{1/2} e^{-u} du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

$$= \frac{3}{2} \left(\left[-u^{1/2} e^{-u} \right]_0^\infty + \frac{1}{2} \int_0^\infty u^{-1/2} e^{-u} du \right)$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

$$= \frac{3}{2} \left(\left[-u^{1/2} e^{-u} \right]_0^\infty + \frac{1}{2} \int_0^\infty u^{-1/2} e^{-u} du \right)$$

► Again, the first term vanishes, leaving:

$$= \frac{3}{4} \int_0^\infty u^{-1/2} e^{-u} du$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

$$= \frac{3}{2} \left(\left[-u^{1/2} e^{-u} \right]_0^\infty + \frac{1}{2} \int_0^\infty u^{-1/2} e^{-u} du \right)$$

► Again, the first term vanishes, leaving:

$$= \frac{3}{4} \int_0^\infty u^{-1/2} e^{-u} du$$

► This last integral is a known Gaussian integral:

$$\int_0^\infty u^{-1/2} e^{-u} du = \sqrt{\pi}$$

Integration by Parts (Detailed Explanation)

Evaluate integral:

$$\int_0^\infty u^{3/2} e^{-u} du$$

Integration by parts formula:

$$\int u dv = uv - \int v du$$

► Second integration:

$$u = u^{1/2}, \quad dv = e^{-u} du \Rightarrow du = \frac{1}{2} u^{-1/2} du, \quad v = -e^{-u}$$

$$= \frac{3}{2} \left(\left[-u^{1/2} e^{-u} \right]_0^\infty + \frac{1}{2} \int_0^\infty u^{-1/2} e^{-u} du \right)$$

► Again, the first term vanishes, leaving:

$$= \frac{3}{4} \int_0^\infty u^{-1/2} e^{-u} du$$

► This last integral is a known Gaussian integral:

$$\int_0^\infty u^{-1/2} e^{-u} du = \sqrt{\pi}$$