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Probability Distributions

I A probability distribution assigns probabilities to all possible
outcomes of a random experiment.

I Two main types:

I Discrete distribution: countable outcomes.
I Continuous distribution: uncountably infinite outcomes

within intervals.
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Discrete Probability Distribution
Characteristics:

I Clearly defined outcomes (finite or countable).

I Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die

I Possible outcomes: X ∈ {1, 2, 3, 4, 5, 6}
I Each outcome is equally likely: P(X = i) = 1

6

Example 2: Flipping a Coin Three Times

I Define random variable: Number of heads in 3 flips.

I Outcomes set:
{HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}

I Count occurrences:

I 0 heads: {TTT} → Probability: 1/8
I 1 head: {HTT ,THT ,TTH} → Probability: 3/8
I 2 heads: {HHT ,HTH,THH} → Probability: 3/8
I 3 heads: {HHH} → Probability: 1/8
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Continuous Probability Distribution

Characteristics:

I Infinite possible values within an interval.

I Probability density function (PDF): f (x)

I Probability found by integrating the PDF over the interval.

P(a < x < b) =

∫ b

a
f (x) dx

I Normalization condition:∫ ∞
−∞

f (x) dx = 1
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Mean Value of Distributions
Discrete case:

x̄ =
∑
i

xiP(xi )

I The mean (expected value) represents the average outcome if
the experiment is repeated many times.

I Computed by summing each possible outcome weighted by its
probability.

Continuous case:

x̄ =

∫ ∞
−∞

xf (x) dx

I The mean is computed as an integral over all possible
outcomes.

I It represents the center of mass or balance point of the
probability density function.



Mean Value of Distributions
Discrete case:

x̄ =
∑
i

xiP(xi )

I The mean (expected value) represents the average outcome if
the experiment is repeated many times.

I Computed by summing each possible outcome weighted by its
probability.

Continuous case:

x̄ =

∫ ∞
−∞

xf (x) dx

I The mean is computed as an integral over all possible
outcomes.

I It represents the center of mass or balance point of the
probability density function.



Mean Value of Distributions
Discrete case:

x̄ =
∑
i

xiP(xi )

I The mean (expected value) represents the average outcome if
the experiment is repeated many times.

I Computed by summing each possible outcome weighted by its
probability.

Continuous case:

x̄ =

∫ ∞
−∞

xf (x) dx

I The mean is computed as an integral over all possible
outcomes.

I It represents the center of mass or balance point of the
probability density function.



Mean Value of Distributions
Discrete case:

x̄ =
∑
i

xiP(xi )

I The mean (expected value) represents the average outcome if
the experiment is repeated many times.

I Computed by summing each possible outcome weighted by its
probability.

Continuous case:

x̄ =

∫ ∞
−∞

xf (x) dx

I The mean is computed as an integral over all possible
outcomes.

I It represents the center of mass or balance point of the
probability density function.



Mean Value of Distributions
Discrete case:

x̄ =
∑
i

xiP(xi )

I The mean (expected value) represents the average outcome if
the experiment is repeated many times.

I Computed by summing each possible outcome weighted by its
probability.

Continuous case:

x̄ =

∫ ∞
−∞

xf (x) dx

I The mean is computed as an integral over all possible
outcomes.

I It represents the center of mass or balance point of the
probability density function.



Integral Techniques: Gaussian Integral

Evaluate integral: ∫ ∞
−∞

e−x
2
dx

Why polar coordinates?

I Integral involves x2 + y2 suggesting circular symmetry.

I Cartesian coordinates complicate symmetry.

I Polar coordinates naturally simplify calculations due to radial
symmetry.

Polar coordinate transformation:

I From Cartesian to Polar: (x , y)→ (r , θ)

I Relation: x = r cos θ, y = r sin θ

I Differential area transformation: dxdy = rdrdθ
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Integral Techniques: Calculation
Integral evaluation step-by-step:

I 2 =

(∫ ∞
−∞

e−x
2
dx

)(∫ ∞
−∞

e−y
2
dy

)

=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2) dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2
r drdθ

=

(∫ 2π

0
dθ

)(∫ ∞
0

e−r
2
r dr

)
= (2π) · 1

2
= π

⇒ I =
√
π

Conclusion: Gaussian integral evaluates to
√
π.



Exercise

Evaluate:

1.

∫ ∞
−∞

x3e−x
2
dx

2.

∫ ∞
−∞

x4e−x
2
dx

Potential questions:

I Why are integrals of odd functions zero?

I How does symmetry simplify the evaluation?
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Solution: Odd Function Integral

Evaluate integral: ∫ ∞
−∞

x3e−x
2
dx

Step-by-step reasoning:

I Recognize integrand x3e−x
2

is an odd function.

I An odd function satisfies: f (−x) = −f (x).

I Integration is symmetric from −∞ to ∞.

I Integral of an odd function over symmetric interval around
zero is always zero.

Therefore, ∫ ∞
−∞

x3e−x
2
dx = 0
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Solution: Even Function Integral

Evaluate integral: ∫ ∞
−∞

x4e−x
2
dx

I The integrand is even: symmetric about x = 0, allowing
simplification:

2

∫ ∞
0

x4e−x
2
dx

I Substitute u = x2; thus, du = 2xdx or xdx = du/2, giving:

= 2

∫ ∞
0

u2e−u
du

2
√
u

=

∫ ∞
0

u3/2e−u du

I Evaluate using integration by parts twice:
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Solution: Even Function Integral

Evaluate integral: ∫ ∞
−∞

x4e−x
2
dx

I Evaluate using integration by parts twice:∫ ∞
0

u3/2e−u du =
3

2

∫ ∞
0

u1/2e−u du

=
3

2
· 1

2

∫ ∞
0

u−1/2e−u du

=
3

2
· 1

2
·
√
π

1

=
3
√
π

4



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)

I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I First integration:

u = u3/2, dv = e−udu ⇒ du =
3

2
u1/2du, v = −e−u

=
[
−u3/2e−u

]∞
0

+
3

2

∫ ∞
0

u1/2e−u du

I The first term vanishes at limits (due to exponential), leaving:

3

2

∫ ∞
0

u1/2e−u du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)

I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π



Integration by Parts (Detailed Explanation)
Evaluate integral: ∫ ∞

0
u3/2e−u du

Integration by parts formula:∫
u dv = uv −

∫
v du

I Second integration:

u = u1/2, dv = e−udu ⇒ du =
1

2
u−1/2du, v = −e−u

=
3

2

([
−u1/2e−u

]∞
0

+
1

2

∫ ∞
0

u−1/2e−u du

)
I Again, the first term vanishes, leaving:

=
3

4

∫ ∞
0

u−1/2e−u du

I This last integral is a known Gaussian integral:∫ ∞
0

u−1/2e−u du =
√
π

I Final result:

=
3

4

√
π


