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> A probability distribution assigns probabilities to all possible
outcomes of a random experiment.

> Two main types:
» Discrete distribution: countable outcomes.
» Continuous distribution: uncountably infinite outcomes

within intervals.
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Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die
Possible outcomes: X € {1,2,3,4,5,6}
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Define random variable: Number of heads in 3 flips.
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Discrete Probability Distribution

Characteristics:
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Clearly defined outcomes (finite or countable).
Sum of probabilities of all outcomes equals 1.

Example 1: Rolling a Die
Possible outcomes: X € {1,2,3,4,5,6}
Each outcome is equally likely: P(X = i) = %

Example 2: Flipping a Coin Three Times
Define random variable: Number of heads in 3 flips.

Outcomes set:
{HHH,HHT ,HTH,HTT, THH, THT, TTH, TTT}
Count occurrences:
» 0 heads: {TTT} — Probability: 1/8
» 1 head: {HTT,THT, TTH} — Probability: 3/8
» 2 heads: {HHT,HTH, THH} — Probability: 3/8
> 3 heads: {HHH} — Probability: 1/8
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Continuous Probability Distribution

Characteristics:
» Infinite possible values within an interval.
» Probability density function (PDF): f(x)
» Probability found by integrating the PDF over the interval.

P(a<x<b):/bf(x)dx

» Normalization condition:

/OO f(x)dx=1

—0o0
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Discrete case:
X = ZX,‘P(X,‘)
i

» The mean (expected value) represents the average outcome if
the experiment is repeated many times.

» Computed by summing each possible outcome weighted by its
probability.

Continuous case:
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> The mean is computed as an integral over all possible
outcomes.



Mean Value of Distributions

Discrete case:
X = ZX,‘P(X,‘)
i

» The mean (expected value) represents the average outcome if
the experiment is repeated many times.

» Computed by summing each possible outcome weighted by its
probability.

Continuous case:
oo
X = / xf(x) dx
—0oQ

> The mean is computed as an integral over all possible
outcomes.

> It represents the center of mass or balance point of the
probability density function.
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Integral Techniques: Gaussian Integral

Evaluate integral:

Why polar coordinates?

» Integral involves x? + y? suggesting circular symmetry.

v

Cartesian coordinates complicate symmetry.

» Polar coordinates naturally simplify calculations due to radial
symmetry.

Polar coordinate transformation:

» From Cartesian to Polar: (x,y) — (r,0)

v

Relation: x =rcosf@, y =rsin6

» Differential area transformation: dxdy = rdrdf



Integral Techniques: Calculation
Integral evaluation step-by-step:

2 = ( / e dx) ( / e’ dy)
/ / O dxdly
27 0o )
:/ / e " rdrdf
0 0
27 00 )
:(/ dc9> (/ e_rrdr)
0 0

= (2m) -

=/=+r

Conclusion: Gaussian integral evaluates to /7.

=T

N =
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Exercise

Evaluate:

o0 2
1./ x3e ™ dx

—0

o0 2
2./ x*e ™ dx

— 00

Potential questions:

» Why are integrals of odd functions zero?

» How does symmetry simplify the evaluation?
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» Recognize integrand x3e™ is an odd function.
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Solution: Odd Function Integral

o0 2
/ x3e™ dx
— 00

Step-by-step reasoning;:

Evaluate integral:

P Recognize integrand x3e=* is an odd function.
» An odd function satisfies: f(—x) = —f(x).

> Integration is symmetric from —oo to co.
>

Integral of an odd function over symmetric interval around
zero is always zero.

Therefore,

/ x3e ™ dx =0
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Evaluate integral:
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P> The integrand is even: symmetric about x = 0, allowing
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Evaluate integral:

o0 2
/ x*e ™ dx
o0

P> The integrand is even: symmetric about x = 0, allowing

simplification:
[ee]
2
2/ x*e™ dx
0

» Substitute u = x2; thus, du = 2xdx or xdx = du/2, giving:
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» Evaluate using integration by parts twice:




Solution: Even Function Integral

o0 2
/ x*e ™ dx
o0

Evaluate integral:

» Evaluate using integration by parts twice:

/ e dy = 3/ ut/2e=! duy

0 2 Jo

1 o

/ 2 gy
0

w Nl Ww N W
—_
B

A‘S . .
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Integration by Parts (Detailed Explanation)
Evaluate integral:
/ u32e™Y du
0

Integration by parts formula:

/udv:uv—/vdu

P First integration:

u=10? dv=eYdu= du= gul/zdu, v=—e"

= [—u‘o’/ze*”}zo + ;/00 u/2e™¥ du
0

u
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Integration by Parts (Detailed Explanation)
Evaluate integral:
/ u32e™Y du
0

Integration by parts formula:

/udv:uv—/vdu

» Second integration:

1
u= Ul/z, dv=¢e Ydu=du= Eu*1/2du, v=—e"

00 1 [°
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Evaluate integral:
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» This last integral is a known Gaussian integral:

/ uH2eV du = /7



